Part Number Hot Search : 
CXA2581 BA09CC0T BF419 SL100 2X006 FR255 TMPA8895 2SB1143S
Product Description
Full Text Search
 

To Download HUF75531SK8 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HUF75531SK8
TM
Data Sheet
April 2000
File Number
4848
6A, 80V, 0.030 Ohm, N-Channel, UltraFET Power MOSFET Packaging
JEDEC MS-012AA
BRANDING DASH
Features
* Ultra Low On-Resistance - rDS(ON) = 0.030, VGS = 10V
5
1 2 3 4
* Simulation Models - Temperature Compensated PSPICETM and SABER(c) Electrical Models - Spice and SABER(c) Thermal Impedance Models - www.intersil.com * Peak Current vs Pulse Width Curve
Symbol
SOURCE (1) SOURCE (2) SOURCE (3) GATE (4) DRAIN (8) DRAIN (7) DRAIN (6) DRAIN (5)
* UIS Rating Curve
Ordering Information
PART NUMBER HUF75531SK8 PACKAGE MS-012AA BRAND 75531SK8
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF75531SK8T.
Absolute Maximum Ratings
TA = 25oC, Unless Otherwise Specified HUF75531SK8 UNITS V V V A A 80 80 20 6 4 Figure 4 Figures 6, 14, 15 2.5 20 -55 to 150 300 260 W mW/oC
oC oC oC
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TA= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Continuous (TA= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief TB370 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg NOTES: 1. TJ = 25oC to 125oC. 2. 50oC/W measured using FR-4 board with 0.76 in2 (490.3 mm2) copper pad at 10 second. 3. 152oC/W measured using FR-4 board with 0.054 in2 (34.8 mm2) copper pad at 1000 seconds 4. 189oC/W measured using FR-4 board with 0.0115 in2 (7.42 mm2) copper pad at 1000 seconds
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
1
CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. UltraFETTM is a trademark of Intersil Corporation. PSPICE(R) is a registered trademark of MicroSim Corporation. 1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright (c) Intersil Corporation 2000
HUF75531SK8
Electrical Specifications PARAMETER OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS IGSS VGS(TH) rDS(ON) RJA ID = 250A, VGS = 0V (Figure 11) VDS = 75V, VGS = 0V VDS = 70V, VGS = 0V, TA = 150oC Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance THERMAL SPECIFICATIONS Thermal Resistance Junction to Ambient Pad Area = 0.76 in2 (490.3 mm2) (Note 2) Pad Area = 0.054 in2 (34.8 mm2) (Note 3) Pad Area = 0.0115 in2 (7.42 mm2)(Note 4) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 10V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) 1210 385 115 pF pF pF Qg(TOT) Qg(10) Qg(TH) Qgs Qgd VGS = 0V to 20V VGS = 0V to 10V VGS = 0V to 2V VDD = 40V, ID = 6A, Ig(REF) = 1.0mA (Figures 13, 16, 17) 68 37 2.4 4.8 14 82 45 2.9 nC nC nC nC nC tON td(ON) tr td(OFF) tf tOFF VDD = 40V, ID = 6A VGS = 10V, RGS = 6.8 (Figures 18, 19) 10.5 25 49 29 55 115 ns ns ns ns ns ns 50 152 189
oC/W oC/W oC/W
TA = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
80 -
-
1 250 100 4 0.030
V A A nA
VGS = 20V VGS = VDS, ID = 250A (Figure 10) ID = 6A, VGS = 10V (Figure 9)
2 -
0.025
V
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage SYMBOL VSD trr QRR ISD = 6A ISD = 4A Reverse Recovery Time Reverse Recovered Charge ISD = 6A, dISD/dt = 100A/s ISD = 6A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 1.00 105 325 UNITS V V ns nC
2
HUF75531SK8 Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 TA , AMBIENT TEMPERATURE (oC)
8
VGS = 10V, RJA = 50oC/W
ID, DRAIN CURRENT (A)
6
4
2
0
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
3 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM
THERMAL IMPEDANCE
RJA = 50oC/W
ZJA, NORMALIZED
0.1
0.01
t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJA x RJA + TA 10-2 10-1 100 101 102 103
SINGLE PULSE 0.001 10-5 10-4 10-3 t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
RJA = 50oC/W
IDM, PEAK CURRENT (A) 100 VGS = 10V
TA = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 150 - TA 125
10 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 1 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 101 102 103
FIGURE 4. PEAK CURRENT CAPABILITY
3
HUF75531SK8 Typical Performance Curves
200 100
ID, DRAIN CURRENT (A)
(Continued)
200 RJA = 50oC/W
IAS, AVALANCHE CURRENT (A)
100
If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100s 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) SINGLE PULSE TJ = MAX RATED TA = 25oC 0.1 1 100 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 200 1ms
10 STARTING TJ = 150oC
STARTING TJ = 25oC
1
10ms
1 0.01
0.1
1
10
100
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
30 25 20 15 10 5 0 2.0 3.0 4.0 5.0 6.0 VGS, GATE TO SOURCE VOLTAGE (V) TJ = 150oC TJ = -55oC PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX VDD = 15V
30 25 20 15 10 5
TJ = 25oC
VGS = 20V VGS = 10V
VGS =5V
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
VGS = 7V VGS = 6V
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TA = 25oC 0 0.5 1.0 1.5 2.0
0 VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. SATURATION CHARACTERISTICS
2.5 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 2.0 NORMALIZED GATE THRESHOLD VOLTAGE
1.2 VGS = VDS, ID = 250A
1.0
1.5
0.8
1.0 VGS = 10V, ID = 6A 0.5 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160
0.6 -80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
4
HUF75531SK8 Typical Performance Curves
1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250A C, CAPACITANCE (pF) 1000
(Continued)
3000 VGS = 0V, f = 1MHz CISS = CGS + CGD
1.1
COSS CDS + CGD
1.0
100 CRSS = CGD
0.9 -80 -40 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC)
30 0.1
1.0
10
80
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
10
VGS , GATE TO SOURCE VOLTAGE (V)
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
VDD = 40V 8
6
4 WAVEFORMS IN DESCENDING ORDER: ID = 6A ID = 1A 0 10 20 30 Qg, GATE CHARGE (nC) 40
2
0
NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
5
HUF75531SK8 Test Circuits and Waveforms
(Continued)
VDS RL VDD VDS VGS = 20V VGS
+
Qg(TOT)
Qg(10) VDD VGS VGS = 2V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 10V
DUT Ig(REF)
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORMS
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
VDD DUT 0
10% 90%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH 50%
FIGURE 18. SWITCHING TIME TEST CIRCUIT
FIGURE 19. SWITCHING TIME WAVEFORM
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application's ambient temperature, TA (oC), and thermal resistance RJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.
( T JM - T A ) P DM = -----------------------------Z JA
dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Intersil provides thermal information to assist the designer's preliminary application evaluation. Figure 20 defines the
(EQ. 1)
In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power
6
HUF75531SK8
RJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other copper areas can be obtained from Figure 20 or by calculation using Equation 2. RJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads.
R JA = 83.2 - 23.6 x
RJA (oC/W)
graph. Spice and SABER thermal models are provided for each of the listed pad areas. Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.
240 RJA = 83.2 - 23.6*ln(AREA) 200 189oC/W - 0.0115in2
160
152oC/W - 0.054in2
120
ln ( Area )
(EQ. 2)
80 0.01 0.1 AREA, TOP COPPER AREA (in2) 1.0
The transient thermal impedance (ZJA) is also effected by varied top copper board area. Figure 21 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the
150 COPPER BOARD AREA - DESCENDING ORDER 0.04 in2 0.28 in2 0.52 in2 0.76 in2 1.00 in2
FIGURE 20. THERMAL RESISTANCE vs MOUNTING PAD AREA
120
ZJA, THERMAL IMPEDANCE (oC/W)
90
60
30
0 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) 102 103
FIGURE 21. THERMAL IMPEDANCE vs MOUNTING PAD AREA
7
HUF75531SK8 PSPICE Electrical Model
.SUBCKT HUF75531SK8 2 1 3 ;
CA 12 8 2.00e-9 CB 15 14 2.00e-9 CIN 6 8 1.09e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
10
rev 22 Feb 2000
LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 DRAIN 2 RSLC1 51 ESLC 50
RSLC2
5 51
ESG 6 8 + LGATE GATE 1 RLGATE CIN EVTEMP RGATE + 18 22 9 20 EVTHRES + 19 8 6
IT 8 17 1 LDRAIN 2 5 1.0e-9 LGATE 1 9 1.12e-9 LSOURCE 3 7 1.29e-10 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 9.30e-3 RGATE 9 20 1.70 RLDRAIN 2 5 10 RLGATE 1 9 11.2 RLSOURCE 3 7 1.29 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 11.35e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
MSTRO LSOURCE 8 RSOURCE RLSOURCE 7 SOURCE 3
S1A 12 S1B CA 13 + EGS 6 8 13 8
S2A 14 13 S2B CB + EDS 5 8 14 IT 15 17
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*125),2))} .MODEL DBODYMOD D (IS = 1.06e-12 RS = 5.86e-3 TRS1 = 4.97e-5 TRS2 = 2.11e-6 CJO = 1.51e-9 TT = 1.05e-7 M = 0.53) .MODEL DBREAKMOD D (RS = 4.45e-1 TRS1 = 1.02e-3 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 1.48e-9 IS = 1e-30 M = 0.78) .MODEL MMEDMOD NMOS (VTO = 3.18 KP = 2.55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.70) .MODEL MSTROMOD NMOS (VTO = 3.67 KP = 55 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.83 KP = 0.1 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 17.0 Rs = 0.10) .MODEL RBREAKMOD RES (TC1 = 1.21e-3 TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 1.32e-2 TC2 = 3.21e-5) .MODEL RSLCMOD RES (TC1 = 4.00e-3 TC2 = 0) .MODEL RSOURCEMOD RES (TC1 = 1.00e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.56e-3 TC2 = -9.91e-6) .MODEL RVTEMPMOD RES (TC1 = -2.44e-3 TC2 = 0) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.0 VOFF= -4.0) VON = -4.0 VOFF= -6.0) VON = -3.0 VOFF= 0.0) VON = 0.0 VOFF= -3.0)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
8
+
-
EBREAK 11 7 17 18 86.60 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
RDRAIN 21 16
DBODY
MWEAK MMED
RBREAK 18 RVTEMP 19
VBAT +
8 22 RVTHRES
HUF75531SK8 SABER Electrical Model
REV 22 feb 2000 template HUF75531SK8 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (is = 1.06e-12, rs=5.86e-3, trs1=4.97e-5, trs2=2.11e-6, cjo = 1.51e-9, tt = 1.05e-7, m = 0.53) dp..model dbreakmod = (rs=4.45e-1, trs1=1.02e-3, trs2= 0) dp..model dplcapmod = (cjo = 1.48e-9, is = 1e-30, m = 0.78) m..model mmedmod = (type=_n, vto = 3.18, kp = 2.55, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.67, kp = 55, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.83, kp = 0.1, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.0, voff = -4.0) DPLCAP 5 sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -.4.0, voff = -6.0) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -3.0, voff = 0.0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.0, voff = -3.0) RSLC1 c.ca n12 n8 = 2.00e-9 c.cb n15 n14 = 2.00e-9 c.cin n6 n8 = 1.09e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1.00e-9 l.lgate n1 n9 = 1.12e-9 l.lsource n3 n7 = 1.29e-10
GATE 1 RLGATE CIN LGATE 51 RSLC2 ISCL
LDRAIN DRAIN 2 RLDRAIN
ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8
50 RDRAIN 21 16
DBREAK 11 MWEAK MMED EBREAK + 17 18
DBODY
MSTRO 8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1.21e-3, tc2 = 0 res.rdrain n50 n16 = 9.30e-3, tc1 = 1.32e-2, tc2 = 3.21e-5 res.rgate n9 n20 = 1.70 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 11.2 res.rlsource n3 n7 = 1.29 res.rslc1 n5 n51 = 1e-6, tc1 = 4.00e-3, tc2 = 0 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 11.35e-3, tc1 = 1.00e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -2.44e-3, tc2 = 0 res.rvthres n22 n8 = 1, tc1 = -2.56e-3, tc2 = -9.91e-6 spe.ebreak n11 n7 n17 n18 = 86.60 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/125))** 2)) } }
S1A 12 13 8 S1B CA 13 + EGS 6 8 S2A 14 13 S2B
-
LSOURCE 7 RLSOURCE
SOURCE 3
RSOURCE RBREAK 17 18 RVTEMP CB + EDS 5 8 14 IT 19
15
VBAT +
-
-
8 RVTHRES
22
9
HUF75531SK8 SPICE Thermal Model
REV 12 Feb 2000 HUF75531SK8 Copper Area = 0.04 in2 CTHERM1 th 8 2.0e-3 CTHERM2 8 7 5.0e-3 CTHERM3 7 6 1.0e-2 CTHERM4 6 5 4.0e-2 CTHERM5 5 4 9.0e-2 CTHERM6 4 3 1.2e-1 CTHERM7 3 2 0.5 CTHERM8 2 tl 1.3 RTHERM1 th 8 0.1 RTHERM2 8 7 0.5 RTHERM3 7 6 1.0 RTHERM4 6 5 5.0 RTHERM5 5 4 8.0 RTHERM6 4 3 26 RTHERM7 3 2 39 RTHERM8 2 tl 55
C
th
JUNCTION
RTHERM1 8
CTHERM1
RTHERM2 7
CTHERM2
RTHERM3 6
CTHERM3
SABER Thermal Model
Copper Area = 0.04 in2 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 8 = 2.0e-3 ctherm.ctherm2 8 7 = 5.0e-3 ctherm.ctherm3 7 6 = 1.0e-2 ctherm.ctherm4 6 5 = 4.0e-2 ctherm.ctherm5 5 4 = 9.0e-2 ctherm.ctherm6 4 3 = 1.2e-1 ctherm.ctherm7 3 2 = 0.5 ctherm.ctherm8 2 tl = 1.3 rtherm.rtherm1 th 8 = 0.1 rtherm.rtherm2 8 7 = 0.5 rtherm.rtherm3 7 6 = 1.0 rtherm.rtherm4 6 5 = 5.0 rtherm.rtherm5 5 4 = 8.0 rtherm.rtherm6 4 3 = 26 rtherm.rtherm7 3 2 = 39 rtherm.rtherm8 2 tl = 55
RTHERM4
CTHERM4 5
RTHERM5 4
CTHERM5
RTHERM6 3
CTHERM6
RTHERM7 2
CTHERM7
RTHERM8
CTHERM8
tl
CASE
TABLE 1. Thermal Models COMPONENT CTHERM6 CTHERM7 CTHERM8 RTHERM6 RTHERM7 RTHERM8 0.04 in2 1.2e-1 0.5 1.3 26 39 55 0.28 in2 1.5e-1 1.0 2.8 20 24 38.7 0.52 in2 2.0e-1 1.0 3.0 15 21 31.3 0.76 in2 2.0e-1 1.0 3.0 13 19 29.7 1.0 in2 2.0e-1 1.0 3.0 12 18 25
10
HUF75531SK8 MS-012AA
8 LEAD JEDEC MS-012AA SMALL OUTLINE PLASTIC PACKAGE INCHES
E E1 1 e 2 A A1
MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 5.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 6.20 4.00 NOTES 2 3 4
SYMBOL A A1 b c
MIN 0.0532 0.004 0.013 0.0075 0.189 0.2284 0.1497
MAX 0.0688 0.0098 0.020 0.0098 0.1968 0.244 0.1574
D 6
D E
b
5
E1 e H L
0.050 BSC 0.0099 0.016 0.0196 0.050
1.27 BSC 0.25 0.40 0.50 1.27
h x 45o
c
L 0.060 1.52 0o-8o
0.004 IN 0.10 mm
0.050 1.27 0.024 0.6
NOTES: 1. All dimensions are within allowable dimensions of Rev. C of JEDEC MS-012AA outline dated 5-90. 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.006 inches (0.15mm) per side. 3. Dimension "E1" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 0.010 inches (0.25mm) per side. 4. "L" is the length of terminal for soldering. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. Controlling dimension: Millimeter. 7. Revision 8 dated 5-99.
0.155 4.0 0.275 7.0 MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE-MOUNTED APPLICATIONS
1.5mm DIA. HOLE
4.0mm USER DIRECTION OF FEED 2.0mm 1.75mm C L
MS-012AA
12mm TAPE AND REEL
12mm
8.0mm
40mm MIN. ACCESS HOLE 18.4mm COVER TAPE 13mm 330mm 50mm
GENERAL INFORMATION 1. 2500 PIECES PER REEL. 2. ORDER IN MULTIPLES OF FULL REELS ONLY. 3. MEETS EIA-481 REVISION "A" SPECIFICATIONS.
12.4mm
11
HUF75531SK8
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
12


▲Up To Search▲   

 
Price & Availability of HUF75531SK8

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X